

Battery and Energy Storage System Boots EV Industry in Post COVID-19 Era

Amita Technologies, Inc. 有量科技股份有限公司

THE PARTNER YOU CAN TRUST

• Over the long term, COVID-19 could have a lasting impact on mobility as it drives change in the macroeconomic developments, consumer behaviors, regulatory developments and technology.

It's all about – Social Distancing

Credit: Getty Images

- Over the long term, COVID-19 could have a lasting impact on mobility as it drives change in the macroeconomic developments, consumer behaviors, regulatory developments and technology.
- Macroeconomic Environment
 - At the height of the crisis, over 90 percent of the factories in China, Europe, and North America closed. Overall car sales dropped tremendously.
 - Public-transit ridership has fallen 70 to 90 percent in major cities across the world.

- Over the long term, COVID-19 could have a lasting impact on mobility as it drives change in the macroeconomic developments, consumer behaviors, regulatory developments and technology.
- Macroeconomic Environment
 - At the height of the crisis, over 90 percent of the factories in China, Europe, and North America closed. Overall car sales dropped tremendously.
 - Mobility players are also suffering. Public-transit ridership has fallen 70 to 90 percent in major cities across the world.
- Consumer Behaviors

healthy market

winners emerge

	Macroeconomic developments	Consumer behavior	Regulatory developments	Technology readiness
2020–21: crisis years	 Auto factories closed, with some automotive workers losing jobs Stocks and oil prices plummet 	 Shift away from shared mobility and public transit to reduce risk of infection Uptake in single-occupancy modes Decrease in vehicle miles traveled due to remote working 	 \$2 trillion economic- stimulus package may help some OEMs and mobility players Corporate Average Fuel Economy regulations may be weakened 	 Autonomous- vehicle testing temporarily suspended Demand drop, and shortage of capital puts pressure on start-ups
2025: potential scenario for "next normal"	 Auto industry recovered and plants reopened Car sales back to precrisis levels 	 Road-based mobility dominates; adoption of electric vehicles might level off 	 Policies to reduce private-car ownership are dropped Weakened emission regulation slows 	 Players double down on investment in autonomous vehicles Market consolidated

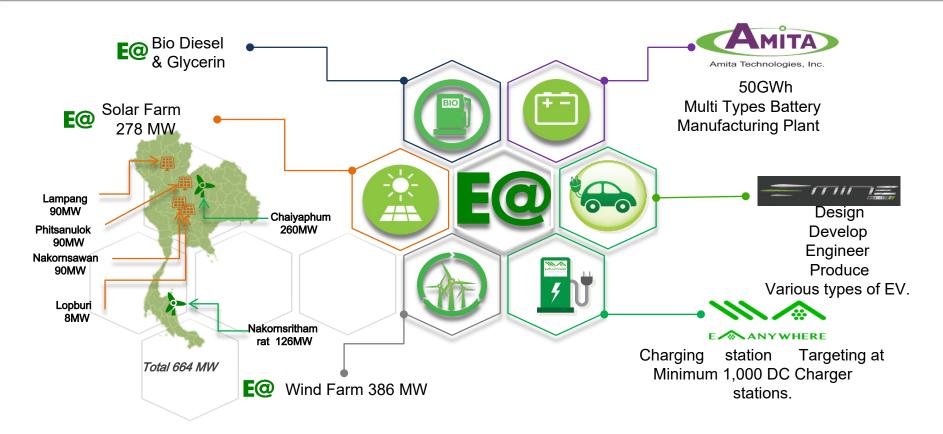
Source: McKinsey & Company, McKinsey Center for Future Mobility

down e-mobility

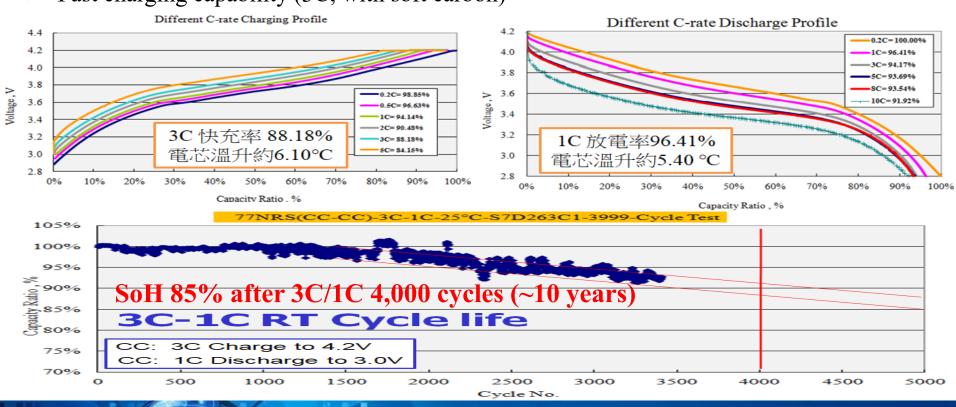
transition

- Over the long term, COVID-19 could have a lasting impact on mobility as it drives change in the macroeconomic developments, consumer behaviors, regulatory developments and technology.
- Macroeconomic Environment
 - At the height of the crisis, over 90 percent of the factories in China, Europe, and North America closed. Overall car sales dropped tremendously.
 - > Public-transit ridership has fallen 70 to 90 percent in major cities across the world.
- Consumer Behaviors
 - Shifting to mode of non-public transport (social distancing)
 - Conscious of ESG (Environmental, Social, Governance)
 - Spend less time in public area (social distancing)
 - Affordable EV (less battery capacity/higher energy density), Fast Charging, Safety

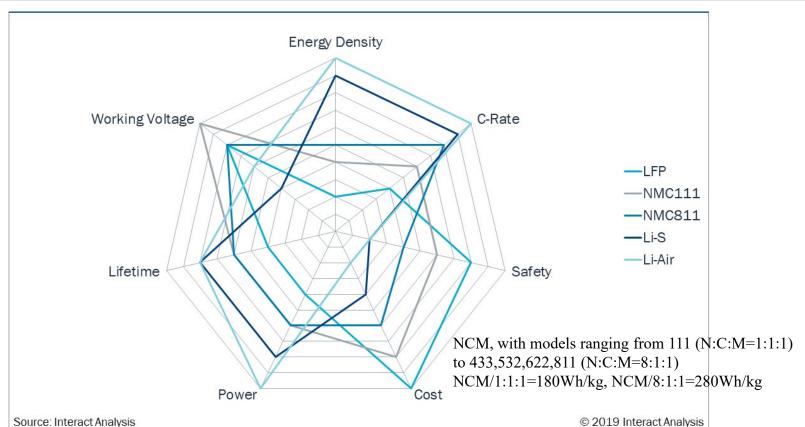
Introduction of Amita Technologies, Inc.


- Amita Technologies, Inc. was established in March 2000 for lithium-ion power battery with primary focuses on,
 - Pouch type (polymer)
 - Material science research with long test data accumulation (NCM, LFP, LTO etc.)
 - In-house expertise of turn-key production facility
- Current production capacity and capability
 - > 44Ah (Power)/48Ah (Energy) battery cell
 - ➤ 200MWh (Taiwan) → 50GWh (Thailand)
- ISO 9001, IATF16949, UL certified
- Member of MIT ILP
- Shareholder
 - Energy Absolute PCL

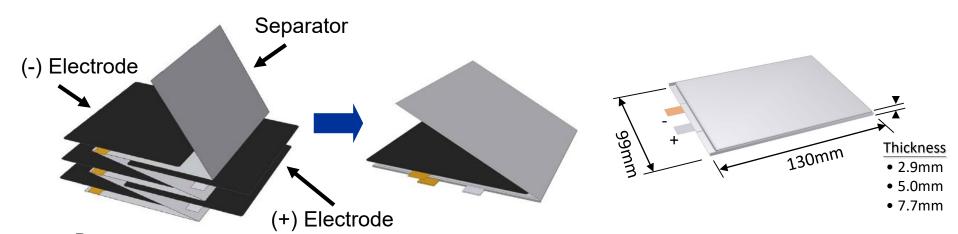
Amita & Energy Absolute



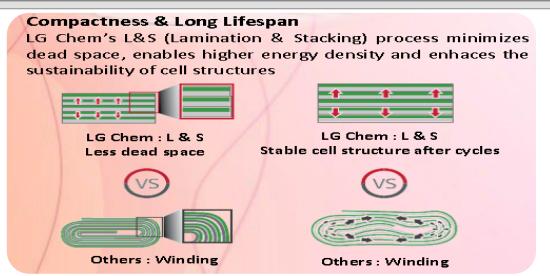
Design Criteria of EV – Fast Charging


• Fast charging capability (3C, with soft carbon)

AMITA Improved Energy Density – Cathode Material



Amita's Battery Cell – Lamination/Stacking


Pros:

- 1. Compact laminate film enable a large capacity.
- 2. The simple structure, being lightweight and maintain a competitive advantage from a cost perspective as well.
- 3. A laminated cell shape that enables excellent heat dissipation, with a compact design which benefit to EV.

Battery Cell – Lamination/Stacking vs. Winding

Material reference: LG Chem DM M4860P2S

	Stacking	Rolling
Process	Slow	Fast
Cycle Life	Long 🎺	Short
Safety	High 🌃	Low
Energy Density	High 📈	Low
C Rate Charge/Discharge	High 🌃	Low

Advantages

- High specific energy and high load capabilities with Power Cells
- Long cycle and extend shelf-life; maintenance-free
- High capacity, low internal resistance, good coulombic efficiency
- Simple charge algorithm and reasonably short charge times
- Low self-discharge (less than half that of NiCd and NiMH)

Thank you!